
Biology and Data-Intensive Scientific Discovery
in the Beginning of the 21st Century

Arnold Smith,1,2 Magdalena Balazinska,2 Chaitan Baru,3 Mark Gomelsky,4 Michael McLennan,5

Lynn Rose,1 Burton Smith,6 Elizabeth Stewart,1 and Eugene Kolker1,2

Abstract

The life sciences are poised at the beginning of a paradigm-changing evolution in the way scientific questions are
answered. Data-Intensive Science (DIS) promise to provide new ways of approaching scientific challenges and
answering questions. This article is a summary of the life sciences issues and challenges as discussed in the DIS
workshop in Seattle, September 19–20, 2010.

Introduction

More than 3 years have passed since Jim Gray, pio-
neering computer scientist, was lost at sea, but his

words captured in his January 11, 2007 talk still ring true: ‘‘We
have to do better at producing tools to support the whole
research cycle—from data capture and data curation to data
analysis and data visualization.’’ Although this statement is
just a very small part of what he said that day, it captures
some of the challenges we are still facing with research in the
21st century. We have yet to fully realize the potential of the
fourth paradigm of science, data-intensive science, because of
complex social and technological challenges that must be
met. The goal of the Data-Intensive Science (DIS) Workshop’s
Part One was to identify the gaps in our abilities and resources
that keep us from realizing that potential.

Current State

In the life sciences today, researchers recognize the need
and potential benefits of sharing select data sets between
scientists, integrating data sets, and performing various types
of vertical studies such as how a drug will affect an individual
given his/her genome. Although the need is recognized, this
type of analysis is difficult to perform today. With the life
sciences we have many and varied data sources, which lead to
fragmented, redundant, and incomplete data sets that are
difficult to coalesce. Even the databases that hold large data
sets are often specialized and fragmented, which hinders
integration.

Although many researchers may wish to utilize the data-
sets of other scientists, not all researchers wish to share their
own work. Sharing requires a great deal more effort than not
sharing. Considerable effort is spent cleaning and curating the
data sets, adding appropriate meta-data to the files, and re-
running samples due to ambiguous results. This substantial
effort that goes into sharing data is generally insufficiently
recognized and rewarded.

Data sets are being underutilized because the right people
do not know about them or cannot get to them. For example,
http://clinicaltrials.gov/ provides clinical trial details but not
the data. Many resources have data that have gone stale or
should have been archived to ease data access, but without
robust storage systems this does not happen. There are sig-
nificant technological challenges with data sharing. People
wish they could get data easily, rather than shipping disks,
but for the most part there is insufficient bandwidth to move
large files. Most sharing is ad hoc/word of mouth rather than
through an organized clearinghouse.

In addition, a lack of validation/quality control of the data
(NCBI takes virtually all submissions of sequence data) as
well as a lack of standardization persists. This lack of termi-
nology standardization leads to confusion because the same
terms are used with different meanings. In addition, there are
too many one-off data analysis tools, with diverse outputs
that make data integration and tool integration difficult.
When confronted with a new data set, all too often the only
recourse is to open yet another Excel workbook for analysis.
This approach neither scales well nor lends itself to data
sharing.
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Most life science researchers are not adequately cross-
trained in the computer sciences or in crossdisciplinary team
science approaches to be able to effectively solve these DIS
challenges.

Barriers

To our knowledge, the most significant barrier to reach-
ing our fourth paradigm potential is a lack of a community-
wide mindset within life sciences. Absence of such mindset
results in absence of a strong and smart push for transfor-
mative policies and mechanisms that increase the efficacy of
biology. Experiments must be done with a clear under-
standing that the data, without question, will be shared, and
therefore certain standards must be followed. Typical pro-
motion/tenure policies and departmental structures are
based on PI-centric research paradigms. Incentives are
needed because adopting this new mindset, as it can be
onerous, until the overall benefit begins to appear. Educa-
tion at the undergraduate and graduate levels targeted at
developing this data-sharing paradigm is lacking. Funding
for data integration groups, which must be cross-
disciplinary, is insufficient and may be best served by sev-
eral funding agencies cofunding a project.

Although some journals require data-publishing for fed-
erally funded studies, no legal requirement exists for phase I
data publication. Additionally, negative results rarely get
published, leading to repetition of experiments, wasting time
and money. Finally, no economic models exist for data shar-
ing, and the competition inherent in the grant mechanism and
profit-motives is at odds with data sharing.

Fear is also associated with data sharing: fear of being
scooped, fear of a mistake being found, fear of legal reper-
cussions, and fear of data security (i.e., HIPAA and informed
consent regulations place a huge burden of data security on
the data producers).

The technological barriers to effective DIS are multifac-
eted. First, we have a data infrastructure that cannot handle
huge data sets for storage, transfer, or analysis. Although it
would be optimal in many ways to have data generation
colocalized with data storage and analysis, that is not re-
alistic. As we push for a ‘‘data for all’’ reality, we need to be
able to give access across the globe, not require the re-
searcher to come to the data. Second, we have data sets that
are fragmented and not easily integrated due to lack of
standardization and quality control. All too often, a given
term’s definition is not clear to the researchers in the field,
much less researchers in another discipline. As a result, data
integration become a data fusion challenge that is part sci-
ence, part art, and very difficult to automate accurately.
Third, the tools for analysis are not standardized and, thus,
do not work well together in pipelines. Transforming the
output of one tool to a form that can serve as input for
the next tool is a task that continues to take inordinate
amounts of time (usually graduate students’ time), ham-
pering productivity considerably. Fourth, the life sciences
have datasets of data types not easily handled by current
technologies. For example, in situ hybridization images,
electrocardiograms, and other highly visual data types are
difficult to crossreference and search in standard systems.
As these issues are not unique to the life sciences, the les-
sons learned in this field could be applied elsewhere.

Future/Outlook

We cannot afford to continue on the same trajectory. Too
much time, effort, and money is being wasted on inefficient
data generation, management, and analysis. Resources are
being wasted at a time when funding is not keeping pace with
our need to compete in an increasingly competitive global
science arena. Our best approach is more effective utilization
of current resources.

Change begins with education. We need community-wide
education on data sharing and analysis. We need to transition
from the mindset that dominates the life sciences, focusing on a
single process or organism, toward that which can be seen in
the field of physics. Integrated training in biology and com-
puter science is needed to broaden knowledge of experts in
both disciplines. Mandatory computer science/data manage-
ment classes for undergraduate and graduate biologists and
natural science courses for computer science students would
encourage collaboration. Because no one person will be able to
learn everything, there must be education on team interactions
and team management. Although science used to be seen as a
solitary pursuit, it is transforming into a team effort. Much of
the training for an MBA is through team projects, in which the
student learns how to get the best from his/her teammates.
This mindset needs to be added to research training.

Education must also occur in other venues. Funding
agencies and career advancement panels must see metrics
beyond citations, such as analytics, usage stats of applications
and the number of useful datasets generated and shared. We
could have a Lifesciences Appstore, and make it worthwhile
to produce tools and datasets for others to use. We could pose
DIS Challenge questions to allow researchers to win awards
for solving challenge problems that carry enough prestige to
influence career advancement.

Funding agencies need to recognize and reward the impact
of multifaceted data-sharing projects. Similar problems
emerged at the start of the Genome Project as individual sci-
entists wondered how working with a team of 100 scientists
would possibly help their own career. As was done with the
Genome Project, there could be numerous funded small data
integration/data management pilot projects. The best would
rise to the top and continue their development. Merit due to
effectiveness needs to be awarded. Many efforts have been
made to manage and integrate large data sets in the life sci-
ences, efforts such as Entrez (http://www.ncbi.nlm.nih.gov/
sites/gquery) and Ensembl (http://www.ensembl.org/
index.html). The Genome Project provided impetus for large
data set management tools, but data generation has gone far
beyond the Genome Project and much more is needed (Fig. 1).

National Science Foundation (NSF) is one funding agency
that has made major steps to support data management. NSF
grant applications require a ‘‘data management’’ section in the
proposal because data management can no longer be left to
chance. As was noted by Cora Marrett, NSF Acting Deputy
Director: ‘‘This is the first step in what will be a more com-
prehensive approach to data policy. It will address the need
for data from publicly-funded research to be made public.’’
This requirement will, hopefully, spur thoughtful design, re-
flecting back on the overall proposal for more efficient data
generation, analysis, and propagation.

Quality control, validation, and tests of data are very much
needed. Similarly, data producers must know how to best
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utilize and navigate through the copious data sets. A review
process akin to Amazon’s 5-star system along with the ability
to select only data sets that meet the given standards have to
become normal practice. Standard, customizable tools are
needed. Therefore, a number of tools should be developed
and lessons learned from genome sequence analysis tool
evolution (BLAST won by popular usage) should be applied.
We need to let data filter out. If it is not accessed, perhaps it
does not need to be easily accessed and could be archived.
Indexing, as implemented by Google, can help the ‘‘best’’ data
come back most quickly. We need semantic data as well as
better data management, versioning, and archiving. As a re-
sult, we will be able to get the needed data. The NSF Office of
Cyberinfrastructure Task Force on Data and Visualization
recommends that each key research domain triage its own
essential data, and then have an open call with storage pro-
viders to allow competition to provide favorable price-points
(NSF_OCI_TFDV, in press).

We need database integration to allow crossreferencing of
different layers of data. For example, the challenge of refer-
encing from the genome to the transcriptome to the proteome
to the metabolome remains unsolved despite numerous at-
tempts. Cloud computing can become part of our future but
will need increased security and more seamless interaction.
Although highly specialized data, such as clinical data, have
exceptional security needs, hackers must be stopped for all
data types. Different approaches need to be examined to de-
termine the best use of technologies such as clouds. Will the
government host all federally funded data sets? Will smaller
entities, such as universities, host data sets for all to access?
With wireless sensor data, Dartmouth provides a good ex-
ample. When interesting publications came by, they asked
for, hosted, and made publicly available the data sets (this
effort is still ongoing at http://crawdad.cs.dartmouth.edu/
index.php). This successful grassroots approach can be ex-
tended and improved.

Representation and Engagement with Society

We need a representative society or alliance but, if a good fit
already exists, we should find and collaborate with existing
groups. The second workshop should invite representatives
from existing societies (XLDB (Extremely Large Databases),
HUPO (Human Proteome Organization, etc.). We also need
representatives from e-science groups.

Our representation is also needed to influence the policies of
the future. We want to influence the scientific, methodological,
technical, and funding solutions. We would encourage joint
funding by different NSF Directorates and joint NSF and by
National Institutes of Health (NIH) to promote collaborative
projects between biologists with IT challenges and computer
scientists with resources looking for problems. Funding should
not be restricted by agency boundaries. The OSTP/NITRD
(Office of Science and Technology Policy/Networking and In-
formation Technology Research and Development Program)
could be a useful resource. The Department of Defense (DOD),
Department of Energy (DOE), Centers for Disease Control and
Prevention (CDC), and Food and Drug Administration (FDA),
under similar data-intensive pressures, can also be involved. The
policies of the future will need to include funding for managing
on-going hosted datasets. This suggestion, echoed by the
NSF_OCI_TFDV, may require a new funding model to manage
the data-intensive challenges (NSF_OCI_TFDV, in press).

We recommend reexamining the basic tenets behind the
Bayh-Dole act. Should data be protected for and owned by the
public or protected for and owned by entities to allow for
privatization? Adopted in 1980, the act permits a university,
small business, or nonprofit institution to elect to pursue
ownership of an invention in preference to the government.
This may be at odds with the goal of data-sharing, as public
disclosure can negate an entity’s competitive edge.

Representation in society is particularly important with
regard to society’s view of our work. Scientists, as a whole,
face continuing challenges to make science accessible, un-
derstandable, and nonthreatening. This is not a new issue,
and is not particular to DIS. However, certain efforts within
the life sciences that involve laypersons (i.e., volunteer clinical
trials) can contribute to data intensive science. We need to
ensure that the layperson feels safe and worthwhile to con-
tribute to data-gathering efforts. Many volunteers want to
track their data and receive results from studies. We need to
enable that involvement without compromising privacy. Ci-
tizen science may be an important value for societal involve-
ment and social network venues.

Facebook, Wikipedia, and podcasts are social media tools
that can help to put a face on science. Facebook has a ‘‘Lay-
person Science’’ page (http://www.facebook.com/pages/
Layperson-Science/375516482719), but there is currently no
content. Wikipedia, perhaps one of the most astounding ex-
amples of societal involvement, is heavily used by the public.

FIG. 1. The top of the Entrez home page. Entrez integrates and enables searching of over 30 NCBI databases.
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However, a search of Wikipedia does not bring up any direct
page to Data-Intensive Sciences or to Fourth Paradigm.

Conclusion

A cultural shift is needed for data-intensive life sciences to
flourish. This shift will require an integration of top-down
approaches promoting data management and grass roots in-
itiatives. No single entity, whether from government, private
industry or academia, can make this happen. No one disci-
pline can foresee all necessary changes. Untapped knowledge
is waiting to be mined from extant data sets with more data
being generated every day. We cannot wait for the perfect
plan, the all-encompassing blueprint to the future of data-
intensive science. We must take thoughtful steps now so the
journey can commence.
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